THE SYNTHESIS OF SOME 2,10-EPOXYPINANES

J. M. COXON, E. DANSTED, M. P. HARTSHORN and K. E. RICHARDS **University of Canterbury, Christchurch, New Zealand**

(Rechcd in UK **22 May 1967;** *accepted for* **publication 3** *July 1%7)*

Abstract--Several 2,3,10-oxygenated pinanes have been prepared and their stereochemistry determined.

IN THE course of other studies we required the epoxides of cis- and trans-pinocarveol. As a consequence we studied the stereochemistry of the epoxidation of cis- and $trans\text{-pinccarveol},$ and of earlier reported oxidation reactions of α -pinene, and f&pinene.

Oxidation of β -pinene with potassium permanganate (KMnO₄) has been reported to yield a diol,¹ m.p. 75 $^{\circ}$. In contrast hydroxylation with osmium tetroxide, also a cis-hydroxylating agent, gave a material m.p. 51° which was supposed² to be a mixture of two *cis-*diols, presumably the 2α , 10- and 2 β , 10-diols. However, in our hands both reagent systems lead to the formation of a single diol **(1)** m.p. 83-85" to which we assign the 2α 10-diol structure. This assignment is made on the basis of the preferred attack by the cis-hydroxylating reagents on the less hindered α -face of the 2,10-double bond, on the side remote from the geminal β -methyl groups, and on the following chemical evidence. Reaction of the dial (1) with p-toluene sulphonyl chloride in pyridine gave the 2α -hydroxy-10-tosylate (2), the structure of which was confirmed by its NMR spectrum which exhibited signals at 3.83 ppm (2H singlet; C_{10} protons), 1.17 and 0.77 ppm (3H each; C_8 and C_9 methyl groups) and 2.44 ppm (4H; p -Me group and 2 α -OH); treatment of the sample with D₂O reduced the integral of the 2.44 ppm signal to 3 protons (p -Me group) thus confirming the assumed superposition of signals Reduction of the tosylate (2) with LAH gave 10β -pinane-2 α -ol (3) identical with the material produced by LAH reduction of 2α , 10-epoxypinane (4) reported earlier.³

 10α -Pinane-2 β -ol (5), produced by methyl Grignard attack on the α -face of the carbonyl group of nopinone⁴ (6), has now been prepared by an alternative route. Reaction of nopinone (6) with trimethyl sulphonium iodide-DMSO-NaH' proceeded by attack again on the α -face of the molecule to give 2 β ,10-epoxypinane (7) in 89% yield. Reduction of this epoxide (7) with LAH gave 10α -pinane-2 β -ol (5).

Oxidation of α -pinene with aqueous KMnO₄ has been reported⁶ to give a diol of unknown configuration. It was later reported⁷ that oxidation with $KMnO₄$ in 90% aqueous acetone gave a ketol (8) with a 2α -hydroxyl group. Reduction of the ketol (8) with aluminium isopropoxide gave⁷ isopinene-glycol (9), m.p. $35-40^{\circ}$ $(m.p. 55.5-56°$ analytical sample). Later the structure assigned to isopinene-glycol was corrected^{δ} to 10. Similarly, the stereochemistry of the product of reaction⁷ of ketol 8 with LAH was subsequently changed⁸ from that of neoisopinene-glycol

(11) to **12 These** reassignments of stereochemistry are inconsistent with the relative rates⁷ of cleavage of the C_3 -epimeric diols 9 or 10 and 11 or 12 with lead tetraacetate; isopinene-glycol (9). m.p. 555-60" reacts more rapidly with lead tetraacetate than neoisopinene-glycol (II), m.p. 160". a result more readily interpreted in terms of the former having the *cis*-diol formulation.

In our hands, oxidation of α -pinene with neutral $KMnO₄$ gave in addition to recovered starting material, pinonic acid (13), ketol 8 and 10β -pinane-2 α ,3 α -diol (9). Reduction of the ketol 8 with aluminium isopropoxide gave the cis -diol (9) , while reduction with LAH gave a second diol (11) presumably epimeric at C-3. These reactions of ketol 8 repeat those quoted earlier' by Schmidt. The stereochemical assignments made immediately above wete confirmed as follows. Perbenzoic acid oxidation of trans-pinocarveol (14) gave 2α , 10-epoxy-108-pinane-3 α -ol (15) which on reduction with LAH gave a diol identical with that obtained from the neutral $KMnO₄$ oxidation. As it is known that neutral $KMnO₄$ cis-hydroxylated olefins and that the diol 9 must contain a 3α -hydroxyl group as it may arise from transpinocarveol, then the 2-hydroxyl group must also have the α -configuration. The c is-character of the 2,3-diol (9) was confirmed by the formation of a crystalline cyclic sulphite (16) on reaction with thionyl chloride. The identity of the diol (9) samples produced via α -pinene-KMnO₄ oxidation, and epoxidation of trans-pinocarveol, necessitates the assignment of 2α , 10-epoxy-10 β -pinane-3 α -ol (15) as the product of epoxidation of *trans*-pinocarveol. This result is in accord with the anticipated attack by a peracid on the less-hindered α -face of the double bond.

Pinocarvone (17) required as the precursor of cis-pinocarveol (18) and normally prepared by selenium dioxide oxidation of β -pinene,⁹ is more conveniently obtained by $MnO₂$ oxidation (87% yield) of the readily available trans-pinocarveol (14).

Perbenzoic acid treatment of cis-pinocarveol (18) in ether solution gave the epoxide (19). The α -orientation of the epoxide ring system was confirmed by LAH reduction of the epoxide (19) to the known $2\alpha,3\beta$ -diol (11).

Schmidt recently reported 8 the reaction of isopinene-glycol (analytical sample m.p. 56') with dilute sulphuric acid to yield the fenchanediol (20). In view of the demonstration above that isopinene-glycol has the 2α , 3α -diol structure (9) it becomes necessary to discuss the mechanism of this rearrangement. Clearly the cis relationship of the departing 2α -hydroxyl group and the migrating methylene group excludes the possibility of a concerted process We suggest that the rearrangement, carried out by Schmidt et al ⁸ on the compound (9) whose stereochemistry is established above, proceeds by a mechanism which involves the discrete carbonium ion (21). The reaction of *trans-pinocarveol* (14) with hydrogen bromide¹⁰ is also now thought to proceed via the identical carbonium ion intermediate. The specificity for $-C⁷H₂$ migration as opposed to $-C⁶(CH₃)₂$ migration is considered to arise as a result of the preferred conformation (22) of the common carbonium ion, in which the α -lobe of the carbonium ion orbital is directed inwards and readily accessible to approach by C_7 (see 23). In contrast C_6 lies close to the plane of the carbonium ion, a poor situation for migration.

An analogous discussion allows the rationalization of the formation of the rearranged compound (24) on treatment¹⁰ of cis-pinocarveol (18) with hydrogen bromide. Here the discrete carbonium ion wiil adopt the conformation 25, Newman projection 26, in which the $-C⁶(CH₃)₂$ migration would clearly be preferred.

 Mc

 \overline{A}

 \bullet

13

17

21

Ή,

ОH

Me.

EXPERIMENTAL

Rotations (CHCl₃ solns at room temp): IR spectra (CS₂ solns used unless otherwise stated, on a Perkin-Elmer 221 spectrometer); alumina used for chromatography (P. Spence, Grade H); NMR spectra (determined on a Varian A-60 in CCl₄ with CHCl₃ and TMS as internal standards).

 $P~i$ mane-2 α , 10-diol (1). A soln of $KMnO₄$ (100 g) and $MgSO₄$ (75 g) in water (2 1.) was carefully added to a stirred soln of β-pinene (100 g) in **EtOH** (1.5 1.). The temp was kept below 5° by immersion in an ice-salt bath. After 2 hr the mixture was filtered through a celite filter-aid filter and the residue washed with CH₂Cl₂ (1 l.). The reaction product was extracted via CH₂Cl₂ and after removal of solvents was absorbed onto deactivated alumina (250 g). Elution with 20% ether in pentane and crystallization from pentane ether gave pinane-2 α ,10-diol (84 g), m.p. 83.5° (lit. cit., 75°).

Oxidation of β -pinene with osmic acid.² To a soln of β -pinene (8.3 g), osmic acid (004 g) and ether (100 ml) was added a soln of H_2O_1 (3.5 M, 100 ml) in anhyd ether. After an induction period of 6 hr a violent reaction occurred. The reaction mixture was washed with $FeSO₂$ aq and the organic phase dried over Na₂SO₄. After removal of solvents the residue was absorbed onto deactivated alumina (50 g). Elution with pentane gave nopinone (1.8 g). Further elution with 20% ether in pentane gave pinane-2 α , 10-diol (1.48 g) , m.p. 82 $^{\circ}$.

 $10-Tosyl-pinane-2\alpha-ol$ (2). A soln of pinane-2 α ,10-diol (2 g), p-toluenesulphonyl chloride (2.5 g) in pyridine (2.5 ml) was heated at 60° for 2 hr. The reaction mixture was poured into ice-water and the product extracted via ether to give a gum $(2.7 g)$, the NMR spectrum consistent with 10-tosyl-pinane-2a-ol.

Reduction of 10-tosyl-pinane-2a-ol. To a soln of 10-tosyl-pinane-2a-ol (1 g), in ether (50 ml) was added LAH $(1 g)$ and the mixture heated under reflux for 2 hr. Isolation via ether and sublimation of the product gave 10β -pinane-2 α -ol 3 (0-37 g), m.p. 76°.

Pinane-2a_,3a-diol (9). A soln of KMnO₄ (100 g) and MgSO₄ (75 g) in water (2 l.) was carefully added to a stirred solution of α -pinene ($[\alpha]_0^{20} + 4^\circ$) in EtOH (1.5 l.). The temp was kept below 5° by immersion in an ice-salt bath. After 2 hr the mixture was filtered through a celite filter-aid filter and the residue washed with CH_2Cl_2 (1 l.). The reaction product was extracted from the aqueous layer with CH_2Cl_2 . Evaporation and fractional distillation at 5 mm with a Nester-Faust spinning band distillation column gave a-pincnc b.p. 29" (134 g), pinonic acid b.p. 113-l IS" (13) mp. 105" (23.4 g) (lit. cit. 103"), mother liquor from crystallization contained 8, and pinane-2 α ,3 α -diol, b.p. 125-126° m.p. 38-40° (14 g). (Lit. cites⁷ m.p. 55.5-56° for material from α -pinene α]_D + 38.5°).

Cyclic *sulphite of pinane-2α,3α-diol*. To a soln of pinane-2α,3α-diol in pyridine (10 ml) ether (500 ml) was added SOCl₂ (5 ml) and the soln kept at 0° for 15 min. Isolation by means of ether and crystallization from pentane gave the cyclic sulphite (16) of pinane-2 α ,3 α -diol (8.7 g), m.p. 60-64°. v_{max} 1210 cm⁻¹. (Nujol mull). (Found: C, 55.2; H, 7.4; S, 14.5. $C_{10}H_{16}O_3S$ requires: C, 55.5; H, 7.5; S, 14.8%.)

 2α ₁0-Epoxypinane-3a-ol (15) trans-14 (20 g) was added to an ice-cold soln of perbenzoic acid (72 g) in ether (1 l.). The soln was allowed to warm to 7° and kept at that temp for 3 days. The reaction mixture was washed with dilute alkali. Evaporation and distillation at 1 mm gave 2α , 10-epoxypinane-3 α -ol (14 g), b.p. 70–72° m.p. 15°, $[\alpha]_0^{20}$ +44° (c, 0-90). (Found: C, 71.6; H, 9.5; $C_{10}H_{16}O_2$ requires: C, 71.4; H, 9.6%.)

Reduction of 2 α ₁0-epoxypinane-3 α -ol. To a soln of 2 α ₁10-epoxypinane-3 α -ol (0-75 g) in ether (75 ml) was added LAH $(0.5 g)$ and the soln heated under reflux for 4 hr. Isolation in the usual manner gave a gum, shown by NMR to be pinane- 2α ,3 α -diol.

2β,10-Epoxypinane (7). Sodium hydride (24 g of 50% dispersion in oil) was washed with pentane to remove paraffm oil. and then added to dry DMSO (250 ml) at 65-70". The mixture was stirred vigorously under N_2 . To this mixture THF (100 ml) was added and the mixture cooled to -10° . Keeping the temp below 0". tri-wthylsdphonium iodide (125 8) was added. followed by nopinone (35.5 g) The soh *was* stirred for 2 hr at lo". Water (500 ml) was added and the epoxidc extracted with pcntanc (1 I.). Evaporation of the solvent and distillation of the **resulting** product gave *2fl.10-epoxyphme* (329 g, m.p. 18.5". [a];' $+38^{\circ}$ (c, 1.1)). (Found: C, 78.9; H, 10.4; C_{1.0}H_{1.6}O requires: C, 78.9; H, 10.6%.)

Reduction of 2f,10-epoxypinane. To a soln of 2f,10-epoxypinane (2 g) in ether (75 ml) was added LAH (2 g) and the resulting mixture heated under rcflux for 2 hr. Isolation uia ether and sublimation of the product gave $5(1.4 g)$, m.p. 58° .

Pinocarvone (17). trans-Pinocarveol (35 g) was stirred into 350 g of $MnO₂$ in pentane (1.5 l.) for 24 hr. The MnO₂ was filtered off and the pentane evaporated to give pinocarvone (31 g) $[\alpha]_0^{20} +60^\circ$ (c, 10), identical by NMR and IR with a sample made by the method of Stallcup and Hawkins.⁹

 2α ,10-Epoxypinane-3 β -ol (19). cis-Pinocarveol (7.3 g) was added to a soln of perbenzoic acid (24 g) in ether (250 ml) and kept at room tcmp for 3 days The reaction mixture was washed with dilute alkali. Evaporation and distillation gave 2a, 10-epoxypinane-3 β -ol (3.3 g), m.p. 6° [a] $^{20}_{10}$ -30°. (Found: C, 71.5; H, 9.4. $C_{10}H_{16}O_2$ requires: C, 71.4; H, 9.6%.)

REFERENCES

' 0. Wallach. *Liebigs Ann* 363.1(1908).

² G. Dupont and R. Dulou, C.R. Acad. Sci., Paris **203**, 92 (1936).

- ³ M. Vilkas, G. Dupont and R. Dulou, *C.R. Acad. Sci.*, *Paris* 242, 1329 (1956).
- \triangleq O. Wallach and A. Bullmann, Liebigs Ann. 356, 227 (1907).
- 5 E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc. 84, 3783 (1962).
- ⁶ K. Slawinsky et al., *Rocz. Chem.* 11, 763 (1931); *Chem. Abstr.* 26, 5933 (1932).
- ' H. Schmidt, Chem. Ber. 93 2485 (1960).
- ⁸ H. Schmidt et al., Chem. Ber. 99, 2736 (1966).
- 9 W. P. Stallcup and J. E. Hawkins, J. Am. Chem. Soc. 63, 3339 (1941).
- ¹⁰ M. P. Hartshorn and A. F. A. Wallis, *J. Chem. Soc.* 5254 (1964).